Orbital origin of field-induced "quantum criticality" in overdoped Tl₂Ba₂CuO_{6+x}

Shibauchi *et al.* (1) report high-field c-axis resistivity ρ_c data for the overdoped cuprate $\text{Tl}_2\text{Ba}_2\text{CuO}_{6+x}$ citing evidence for a field-induced quantum critical point coincident with B_{c2} . Such a claim has profound implications for our understanding of the cuprate phase diagram. Our own extensive angle-dependent magnetoresistance studies of $\text{Tl}_2\text{Ba}_2\text{CuO}_{6+x}$, however, offer an alternative explanation for their findings based entirely on cyclotron (orbital) effects.

Contrary to claims in ref. 1, orbital magnetoresistance for B/I/I/c is significant in $Tl_2Ba_2CuO_{6+x}$ because of its mod2

symmetric c-axis warping (Fig. 1A) (2). As shown in the simulation in Fig. 1B, for sufficiently clean samples this orbital effect is large enough to create an upturn in $\rho_c(T)$ at low temperatures. At a particular intermediate field (25 T in this example), ρ_c appears to follow a T^2 dependence over a wide temperature range. However, neither the upturn nor the T^2 crossover regime has any physical meaning.

The authors argue that the observed violation of Kohler's rule proves that the critical scaling is intrinsic and not simply governed by $\omega_c \tau$. This is not necessarily correct. Kohler's rule is obeyed only if $\omega_c \tau$ is isotropic or its basal plane anisotropy remains constant with temperature (Fig. 1*C*). As reported in ref. 3, $\omega_c \tau$ in Tl₂Ba₂CuO_{6+x} has a *T*-dependent anisotropy at low temperatures that is sufficient to account for the observed violation (Fig. 1*D*). In short, had the authors of ref. 1 studied samples with different levels of impurity, or measured in-plane resistivity data (with $\mathbf{B}//c$), they may have reached very different conclusions about their measurements.

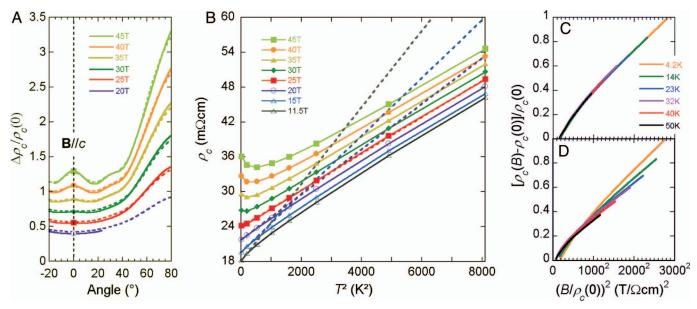


Fig. 1. (A) Polar angle-dependent magnetoresistance data (solid lines) in overdoped $Tl_2Ba_2CuO_{6+x}$ ($T_c=15$ K) at T=4.2 K for various field strengths up to 45 Tesla. Dashed lines are fits obtained by using the semiclassical Boltzmann equation and a Fermi surface representation of $Tl_2Ba_2CuO_{6+x}$ consistent with its body-centered tetragonal symmetry (3). The peak at B/Ic arises because of the effective cancellation of the C-axis velocity around an in-plane cyclotron orbit in this representation. (B) ρ_c versus T^2 for a sample of higher quality than reported in ref. 1 at different field strengths. The 45 T line is measured data. Lines at lower fields are produced by simply scaling the data by the appropriate $\omega_c \tau$ value. When $\omega_c \tau$ is large enough at low temperatures and high fields, an upturn is clearly visible. For this particular sample, the data at 25 T resemble the 45 T data shown in ref. 1. Indeed, the straight line fits to the low-T data for $B \le 25$ T (dashed lines) show an evolution with field very similar to those reported in ref. 1. (C) Kohler plot simulation assuming that $\omega_c \tau$ is isotropic within the basal plane. Kohler's rule is clearly obeyed in this case. (D) If $\omega_c \tau$ has fourfold basal-plane anisotropy that is T-dependent, however, Kohler's rule is violated, as observed experimentally.

M. M. J. French and N. E. Hussey*

H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

- Shibauchi T, et al. (2008) Field-induced quantum critical route to a Fermi liquid in high-temperature superconductors. Proc Natl Acad Sci USA 105:7120–7123.
- Analytis JG, Abdel-Jawad M, Balicas L, French MMJ, Hussey NE (2007) Angle-dependent magnetoresistance measurements in Tl₂Ba₂CuO_{6+x} and the need for anisotropic scattering. *Phys Rev B* 76:104523.

 Abdel-Jawad M, et al. (2006) Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor. Nat Phys (London) 2:821–825.

Author contributions: M.M.J.F. and N.E.H. wrote the paper.

The authors declare no conflict of interest.

*To whom correspondence should be addressed. E-mail: n.e.hussey@bristol.ac.uk.

© 2008 by The National Academy of Sciences of the USA